

Renato Castro de Freitas Costa Neto

Estudo Experimental Sobre os Efeitos da Fluência do Concreto em Pilares Esbeltos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Estruturas.

Orientador: Giuseppe Barbosa Guimarães

Rio de Janeiro Julho de 2004.

Renato Castro de Freitas Costa Neto

Estudo experimental sobre os efeitos da fluência do concreto em pilares esbeltos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof. Giuseppe Barbosa Guimarães** Orientador Departamento de Engenharia Civil - PUC-Rio

> > Prof. Emil de Souza Sánchez Filho Faculdade de Engenharia - UFJF

Profa. Maria Elizabeth da Nóbrega Tavares Departamento de Estruturas e Fundações - UERJ

Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil – PUC-Rio

> Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 16 de julho de 2004.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Renato Castro de Freitas Costa Neto

Graduou-se em Engenharia Civil na UNAMA (Universidade da Amazônia), onde participou de programas de monitorias e de Iniciação Científica na área de Engenharia Civil.

Ficha Catalográfica

Costa Neto, Renato

Estudo Experimental da Fluência em Pilares Esbeltos de Concreto Armado / Renato Castro de Freitas Costa Neto; orientador: Giuseppe Barbosa Guimarães - Rio de Janeiro: PUC, Departamento de Engenharia Civil,2004.

v. 112f.:il; 29,7cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Incluí referências bibliográficas.

1. Engenharia Civil - Teses, 2. Estudo Experimental, 3. Fluência, 4. Pilares Esbeltos, I. Guimarães, Giuseppe Barbosa II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Agradecimentos

Agradeço inicialmente a Deus, pela minha existência e por tudo que conquistei.

Aos meus pais Clovis e Lourdes, minha mãe número dois Ligia, minha irmã Marina, pelo amor, amizade, carinho, cumplicidade, apoio e tudo que uma família unida e feliz podem nos dar. E a minha avó Creuza, por me ter acolhido e por todo carinho.

A minha noiva Carolina, pela compreensão da minha ausência, incentivo, companheirismo, amizade, apoio e amor que nunca me deixou faltar. E a sua família, Sebastião, Adelinda, Alexandre e Sissa.

A tia Belém e ao primo Rosendo, pelo apoio, companheirismo e carinho que me deram durante todo esse período. E a todos os meus tios, tias, primos e primas que torciam por mim.

Ao professor Giuseppe Barbosa Guimarães, pela orientação.

Aos amigos da Pós-Graduação, Sandoval, Fernando, Flávio e Marcélia, pelo apoio.

Aos professores e funcionários do Departamento de Engenharia Civil, pelo apoio e colaboração.

Pelos técnicos do LEM- Laboratório de Estruturas e Materiais, Euclides, José Nilson, Aroldo e Evandro, pela ajuda.

A todas as pessoas que contribuíram de alguma maneira para a realização deste trabalho.

A CAPES pelo apoio financeiro.

Resumo

Costa Neto, Renato C. F.; Guimarães, Giuseppe Barbosa. **Estudo Experimental Sobre os Efeitos da Fluência do Concreto em Pilares Esbeltos.** Rio de Janeiro, 2004. 112p. Dissertação de Mestrado -Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Carregamentos de longa duração produzem um aumento contínuo nas deformações das estruturas de concreto armado devido à fluência do concreto. Em geral a fluência do concreto não afeta a resistência dos elementos estruturais. Em pilares esbeltos, entretanto, ela pode reduzir a capacidade de carga como resultado do aumento substancial das excentricidades de segunda ordem levando a uma instabilidade do pilar. Neste trabalho é feito um estudo experimental sobre os efeitos da fluência do concreto em pilares esbeltos. Foram ensaiados seis pilares de 210 cm de comprimento e seção transversal de 12,5 x 15 cm, solicitados a flexo-compressão reta. As variáveis consideradas foram a taxa de armadura e a excentricidade da carga aplicada, constante e de longa duração. O principal objetivo do trabalho foi estudar o efeito do aumento, ao longo do tempo, da excentricidade de segunda ordem sobre a resistência dos pilares. Os resultados experimentais são comparados com resultados teóricos obtidos por meio de métodos encontrados na literatura.

Palavras-chave

Estudo experimental; fluência; pilares esbeltos.

Abstract

Costa Neto, Renato C. F.; Guimarães, Giuseppe Barbosa (Advisor). **Experimental Study on the Effects of the Concrete Creep in Slender Columns.** Rio de Janeiro, 2004. 112p. MSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Sustained loads cause a progressive increase of the strains in a structure due to concrete creep. In general, creep strains do not affect the strength of the structural elements. In slender columns, however, they can reduce the load capacity as a result of the continuous increase of the second order eccentricity, leading to the column instability. An experimental investigation on the effects of concrete creep on the behavior of slender columns was carried out in the present study. Six columns 210 cm long, with cross sections of 12,5 cm x 15 cm, were tested subjected to sustained eccentric compressive loading. The main objective was to study the effect of the increase of the second order eccentricity on the ultimate strength of the columns. The experimental results were compared with results obtained from theoretical methods available in the literature .

PUC-Rio - Certificação Digital Nº 0212635/CA

Keywords

Experimental analysis; creep; slender columns.

Sumário

1 Introdução	17
1.1. Histórico	17
1.2. Objetivo	17
1.3. Conteúdo	18
2 Revisão Bibliográfica	19
2.1. Tipos de Deformação	19
2.2. Fluência	20
2.3. Princípio da Superposição	23
2.4. Fatores que Afetam a Fluência	26
2.4.1. Influência dos Agregados	26
2.4.2. Tipos de Cimento	28
2.4.3. Influência da Umidade	29
2.4.4. Influência da Resistência	32
2.4.5. Relação entre Fluência e Tempo	33
2.5. Natureza da Fluência	35
2.6. Efeitos da Fluência	38
2.7. Outras Influências	39
2.8. Métodos de Cálculo	42
2.8.1. Método do Módulo Efetivo [24]	42
2.8.2. Método Melhorado de Dischinger [24]	42
2.9. Flambagem por Fluência de Pilares Esbeltos	43
2.10. Efeitos de Segunda Ordem	48
2.11. Cálculo do Coeficiente de Fluência	50
3 Programa Experimental	56
3.1. Características dos Pilares	56
3.2. Forma e Concretagem	56
3.3. Propriedades do Concreto	58
3.4. Propriedades Mecânicas do Aço	61

3.5. Instrumentação dos Pilares	64
3.6. Sistema de aplicação de carga	66
3.7. Aquisição de dados	66
3.8. Procedimento de ensaio	66
4 Análise dos Resultados	72
4.1. Comportamento dos pilares	72
4.2. Influência da Excentricidade	79
4.3. Influência da taxa de armadura	81
5 Conclusões e Sugestões para Trabalhos Futuros	98
5.1. Conclusões	98
5.2. Sugestões para Trabalhos Futuros	99
6 Referências Bibliográficas	100
Anexo A	103

Lista de figuras

Figura 2.1 – Deformação dependente do tempo em concreto sob carga
constante [8]. 21
Figura 2.2 - Relaxação de tensão sob deformação constante [8].22
Figura 2.3 - Recuperação da fluência numa amostra de argamassa submetida a
uma tensão de 14,8 MPa, numa umidade relativa do ar de 95%, e em seguida
descarregada; adaptada de [1]. 22
Figura 2.4 – Principio da superposição de deformações por fluência;
adaptada de [1]. 24
Figura 2.5 – Princípio da superposição de deformações por fluência;
adaptada de [14]. 26
Figura 2.6 – Relação entre a fluência e o volume de agregados [8]. 27
Figura 2.7 - Fluência do concreto curado durante 28 dias e depois carregado;
adaptada de [22]. 30
Figura 2.8 - Relação entre tensão mantida e a expansão em água e deformação
residual do concreto; adaptada de [8]. 30
Figura 2.9 - Deformação com o tempo de concretos submetidos a diferentes
tensões, conservados alternadamente em água e ar com umidade relativa de 50%;
adaptada de [8]. 31
Figura 2.10 - Pórtico simples para determinação da fluência do concreto sob
tensão aproximadamente constante; adaptada de [8]. 34
Figura 2.11 - Intervalo das curvas fluência-tempo para concretos conservados em
ambientes com diferentes umidades relativas; adaptada de [22]. 35
Figura 2.12 - Relação entre fluência e tempo sob carga para concretos
conservados em diferentes temperaturas; adaptada de [8]. 39
Figura 2.13 – Fluência devida a carregamento estático e sob carregamento cíclico;
adaptada de [8]. 40
Figura 2.14 – Relação momento-curvatura para um pilar esbelto;
adaptada de [1]. 44
Figura 2.15 – Variação da relação momento-curvatura para um pilar esbelto com o
tempo; adaptada de [1]. 45

Figura 2.16 - Relação entre deformação ultima nas fibras comprimidas e tempo
sob carga para vários valores de $\varphi_{;}$ adaptada de [1]. 45
Figura 2.17 – Variação de α_u e β_u com a resistência do concreto;
adaptada de [1]. 47
Figura 2.18 – Variação de k_{α} e k_{β} com a resistência do concreto;
adaptada de [1]. 47
Figura 2.19 – Variação da resistência do concreto com a idade;
adaptada de [40]. 51
Figura 2.20 – Variação de k_{α} e k_{β} com a resistência do concreto;
adaptada de [37]. 52
Figura 3.1 – Características dos pilares (cotas em centímetros).57
Figura 3.2 – Detalhe das formas.57
Figura 3.3 – Diagrama Tensão x Idade do concreto.59
Figura 3.4 - Detalhe da instrumentação dos corpos-de-prova nos ensaios para
obtenção do diagrama tensão-deformação específica do concreto.60
Figura 3.5 – Diagrama tensão-deformação específica do concreto.60
Figura 3.6 - Diagrama tensão x deformação específica da primeira barra de aço
ensaiada com diâmetro nominal de 5 mm.62
Figura 3.7 – Diagrama tensão x deformação específica da segunda barra de aço
ensaiada com diâmetro nominal de 5 mm.62
Figura 3.8 - Diagrama tensão x deformação específica da terceira barra de aço
ensaiada com diâmetro nominal de 5 mm.62
Figura 3.9 - Diagrama tensão x deformação específica da primeira barra de aço
ensaiada com diâmetro nominal de 12,5 mm.63
Figura 3.10 – Diagrama tensão x deformação específica da segunda barra de aço
ensaiada com diâmetro nominal de 12,5 <i>mm</i> . 63
Figura 3.11 - Diagrama tensão x deformação específica da terceira barra de aço
ensaiada com diâmetro nominal de 12,5 mm.63
Figura 3.12 - (a) Detalhe dos extensômetros elétricos de resistência nos pilares
com $A_s = 0,75$ cm ² (4 ϕ 5mm), (b) Detalhe do extensômetros elétricos de
resistência nos pilares com $A_s = 7,5 \text{ cm}^2$ (6 ϕ 12,5mm). 64
Figura 3.13 – Instrumentação dos pilares. 65

Figura 3.14 – Instrumentação do pilar E1,5-p0,4%.	65
Figura 3.15 – (a) Vista frontal dos pórticos de reação para pilares com $\rho=0,4$	%;
(b) Vista lateral dos pórticos de reação; (c) Detalhe das extremidades superio	or e
inferior, vista frontal; (d) Detalhe das extremidades superior e inferi	ior,
vista lateral.	67
Figura 3.16 – (a) Vista frontal dos pórticos de reação para pilares com $\rho=4\%$;	(b)
Vista lateral dos pórticos de reação; (c) Detalhe das extremidades superio	r e
inferior, vista frontal; (d) Detalhe das extremidades superior e inferi	ior,
vista lateral.	68
Figura 3.17 – Detalhe das extremidades superiores e inferior dos pórticos, (a) e	(c)
pórticos para os pilares com $\rho=0,4\%$, (b) e (d) pórticos para	os
pilares com ρ=4%.	69
Figura 3.18 - Indicador de deformação portátil e multímetro.	69
Figura 3.19 – Vista geral do local onde foram realizados os ensaios.	70
Figura 3.20 – Variação da temperatura durante o período dos ensaios.	71
Figura 3.21 – Variação da umidade relativa do ar durante o período dos ensaios	.71
Figura 4.1 – Deformações no pilar E1,5-p0,4%.	72
Figura 4.2 – Evolução do deslocamento transversal (flecha)	no
pilar E1,5-p0,4%.	73
Figura 4.3 – Deformações no pilar E2,0-p0,4%.	74
Figura 4.4 – Evolução do deslocamento transversal (flecha)	no
pilar E2,0-p0,4%.	74
Figura 4.5 – Deformações no pilar E2,5-p0,4%.	75
Figura 4.6 – Evolução do deslocamento transversal (flecha)	no
pilar E2,5-p0,4%.	75
Figura 4.7 – Deformações no pilar E1,5-p4%.	76
Figura 4.8 – Evolução do deslocamento transversal (flecha) no pilar E1,5-p4%.	76
Figura 4.9 – Deformações no pilar E2,0-p4%.	77
Figura 4.10 – Evolução do deslocamento transversal (flecha)	no
pilar E2,0-p4%.	77
Figura 4.11 – Deformações no pilar E2,5-p4%.	78
Figura 4.12 – Evolução do deslocamento transversal (flecha)	no
pilar E2,5-p4%.	78

Figura 4.13 - Influência da excentricidade na flecha dos pilares com taxa	de
armadura ρ=0,4%.	79
Figura 4.14 - Influência da excentricidade na flecha dos pilares com taxa	de
armadura $\rho=4\%$.	80
Figura 4.15 – Influência da taxa de armadura nas flechas dos pilares co	om
excentricidade de 1 ^a ordem de 1,5 cm.	81
Figura 4.16 – Influência da taxa de armadura nas flechas dos pilares co	om
excentricidade de 1 ^ª ordem de 2,0 cm.	82
Figura 4.17 – Influência da taxa de armadura nas flechas dos pilares co	om
excentricidade de 1ª ordem de 2,5 cm.	83
Figura 4.18 – Diagrama tensão-deformação específica do concreto considerand	o a
fluência.	85
Figura 4.19 – Deformações específicas ε_c teóricas e experimentais	no
pilar E2,0-p0,4%.	88
Figura 4.20 – Deformações específicas ε_c teóricas e experimentais	no
pilar E2,5-p0,4%	88
Figura 4.21 – Deformações específicas ε_c teóricas e experimentais	no
pilar E1,5-ρ4%.	89
Figura 4.22 – Deformações específicas ε_c teóricas e experimentais	no
pilar E2,0-ρ4%.	89
Figura 4.23 – Deformações específicas ε_c teóricas e experimentais	no
pilar E2,5-p4%.	90
Figura 4.24 – Excentricidades e_2 teóricas e experimentais no pilar E2,0- ρ 0,4%.	90
Figura 4.25 – Excentricidades e_2 teóricas e experimentais no pilar E2,5- ρ 0,4%.	91
Figura 4.26 – Excentricidades e_2 teóricas e experimentais no pilar E1,5- ρ 4%.	91
Figura 4.27 – Excentricidades e ₂ teóricas e experimentais no pilar E2,0-p4%.	92
Figura 4.28 – Excentricidades e ₂ teóricas e experimentais no pilar E2,5-p4%.	92
Figura 4.26 – Excentricidades e ₂ experimentais e obtidas pelo processo	da
NBR6118 no pilar E2,0-p0,4%.	95
Figura 4.27 – Excentricidades e ₂ experimentais e obtidas pelo processo	da
NBR6118 no pilar E2,5-p0,4%.	95
Figura 4.28 – Excentricidades e ₂ experimentais e obtidas pelo processo	da
NBR6118 no pilar E1,5-p4%.	96

Figura 4.29 – Excentricidades e_2 experimentais e obtidas pelo processo) da
NBR6118 no pilar E2,0-p4%.	96
Figura 4.30 – Excentricidades e_2 experimentais e obtidas pelo processo	da
NBR6118 no pilar E1,5-p4%.	97
Figura A.1 – Formas dos pilares.	103
Figura A.2 – Formas dos pilares já concretados.	103
Figura A.3 – (a) e (b) Ensaio de módulo de elasticidade.	104
Figura A.4 – Início do ensaio do pilar E1,5-p0,4%.	105
Figura A.5 – Pilar E1,5-p0,4% após o início do ensaio	105
Figura A.6 – (a) e (b) Fissuração do pilar E2,0-p0,4%.	106
Figura A.7 – Ruptura do pilar E2,0-p0,4%. (a) Vista supe	rior,
(b) Vista lateral.	107
Figura A.8 – Esmagamento da seção de concreto comprimida	do
pilar E2,0-p0,4%.	108
Figura A.9 – Ruptura do pilar E2,5-p0,4%.	108
Figura A.10 – Ruptura do pilar E2,5-p0,4%.	109
Figura A.11 – Esmagamento da seção de concreto comprimida	do
pilar E2,5-p0,4%.	109
Figura A.12 – Pilar E2,5-p4%.	110
Figura A.13 – Flambagem do pilar E2,5-p4% no instante t=0.	110
Figura A.14 – Flambagem do pilar E2,5-p4% após 50 dias de carregamento.	111
Figura A.15 – Pilar E2,0-p4%.	111
Figura A.16 – Pilar E2,0-p4%.	112
Figura A.17 – Pilar E1,5-p4%.	112
Figura A.18 – Pilar E2,0-p4%.	112

Lista de tabelas

Tabela 1.1 – Classificação das deformações com o tempo.	20
Tabela 2.2 – Dados dos testes de Davies [11].	25
Tabela 2.3 – Valores de fluência após 30 anos medidos por Troxell et al. [22].	34
Tabela 2.4 - Valores numéricos usuais para a determinação da fluên	cia
e da retração.	51
Tabela 2.5 - Valores da fluência e da retração em função da velocidade	de
endurecimento do cimento.	53
Tabela 3.1 – Nomenclatura dos pilares.	56
Tabela 3.2 – Quantidade de material por m^3 de concreto.	58
Tabela 3.3 – Resultados dos teste de compressão simples com corpos-de-prova.	59
Tabela 3.4 – Módulo de elasticidade secante do concreto aos 28 dias.	61
Tabela 3.5 – Resultados dos teste de tração nas amostras de aço.	64
Tabela 3.6 – Valores das cargas aplicadas nos pilares.	70
Tabela 4.1 – Comparação dos resultados dos pilares com taxa	de
armadura ρ=0,4%.	79
Tabela 4.2 – Comparação dos resultados dos pilares com taxa	de
armadura ρ=4%.	80
Tabela 4.3 – Resultados dos pilares com excentricidade de 1ª ordem de 1,5 cm.	.81
Tabela 4.3 – Resultados dos pilares com excentricidade de 1ª ordem de 2,0 cm.	. 82
Tabela 4.4 – Resultados dos pilares com excentricidade de 1ª ordem de 2,5 cm.	83
Tabela 4.5 – Resultados gerais obtidos nos ensaios.	84
Tabela 4.6 – Resultados gerais obtidos pelo processo analítico.	93
Tabela 4.7 – Resultados gerais obtidos pelo modelo da NBR 6118/2003.	97

Lista de símbolos

ALFABETO ROMANO

Ac	-	área da seção transversal de concreto;
A _s	_	área da seção transversal da armadura longitudinal tracionada;
A _{s1}	_	área da seção transversal da armadura longitudinal comprimida;
b	_	largura da seção transversal do pilar;
d	_	distância do bordo mais comprimido até o centro de gravidade das
		barras de aço que constituem a armação tracionada pela flexão;
ď	_	a diferença (h-d);
d_1	_	distância do bordo superior ao centro de gravidade da armadura
		superior;
E _c	_	módulo de elasticidade do concreto;
f_c	-	tensão de compressão do concreto;
f _{ck}	_	valor característico da resistência do concreto à compressão;
f_{yd}	_	valor de resistência do aço à tração, para as barras horizontais;
f_{yk}	_	valor característico da resistência do aço à tração;
F _d	_	valor da força concentrada excêntrica aplicada no pilar;
h	_	altura total da seção transversal;
1	_	comprimento do pilar
le	_	comprimento efetivo de flambagem do pilar;
Μ	_	momento aplicado na seção (N.e);
Р	_	capacidade de carga dos pilares;
8	_	espaçamento do estribo;
X	_	altura da linha neutra da seção;

ALFABETO GREGO

- ϵ_c deformação específica do concreto na fibra mais comprimida;
- ϵ_s deformação específica do aço da armadura tracionada;
- ϵ_{s1} deformação específica do aço da armadura comprimida;
- σ tensão;
- ρ taxa de armadura volumétrica;
- ϕ coeficiente de fluência.